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ABSTRACT 

A growth sequence has been developed to attempt to find the absolutely minimal energy 

structure for a cluster of 𝑛 atoms in two dimensions.  This sequence produces 62 of the global minima 

obtained by a random search for 1 ≤ 𝑛 ≤ 80.  It also yields energies lower than or equal to the previous 

best known minima for all but two of 19 sizes reported in MINPACK-2 (B.M. Averick, R. G. Carter, J. J. 

Moré, and G. L. Xue, “The MINPACK-2 Test Problem Collection,” Argonne National Laboratory, 

Mathematics and Computer Science Division, Technical Memorandum No. 150, June 1992, p. 44). 
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I. INTRODUCTION 

We examine clusters of atoms that interact via the Lennard-Jones (LJ) potential, 

𝑉LJ =  ∑ ∑ (𝑟𝑖𝑗
−12 − 2𝑟𝑖𝑗

−6)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

                                              (1) 

where 𝑉LJ is the potential in units of the depth of the potential well,  𝑟𝑖𝑗 = |𝐫𝑖 − 𝐫𝑗 | is the distance 

between atom  𝑖 and atom 𝑗 in units of the equilibrium distance, and 𝑛 is the size of the cluster.   

We have established a growth sequence for the initial configuration of a cluster of size 𝑛 in a 

hexagonal packing system.  The resulting energies of these structures prove to be the global minima 

obtained from our unbiased random search for many cluster sizes. 

We conduct an unbiased random search for the absolute or global minimum of (1).  We use the Big 

Bang Algorithm1, modified for the two-dimensional case, to generate random initial configurations of 

the clusters and the initial expansion of the clusters.  We perform local minimizations starting from the 

cluster configurations after this initial expansion.      

 

II. METHOD 

The construction of clusters by growth sequence greatly facilitates the search for prospective 

minima.  In this approach, also called the “greedy” method, a cluster is simply the preceding size’s 

cluster with one atom appended.  The growth sequence approach saves time and effort because it 

determines from the previous size the positions of all atoms but one.  We compared local minimum 

energies of small clusters and developed the 𝑔 growth sequence that generates global minima of all 

sizes from 1 to 33.   

We used a hexagonal lattice (See J. C. Yang, “Structure and binding of two-dimensional Lennard-

Jones clusters,” section 2.2, for comparison of clusters on a hexagonal lattice and other clusters).  We 
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assign the atoms to lattice points, where they remain throughout the sequence.  The first atom was 

placed at the origin, and the subsequent six atoms consecutively around the first, counterclockwise from 

the positive x-axis.  We then proceeded to a new hexagonal “shell.”   An intuitive approach was used for 

several larger sizes.  One such case is size ten.  Figure 2.1 represents two clusters of size ten.  The 

number for each atom is indicated.  In figure (a) the tenth atom contributes two nearest-neighbor bonds 

to the previous cluster in the sequence, whereas it contributes three nearest-neighbor bonds in figure 

(b).  The structure in figure (b) had, indeed, the lowest energy when it and other clusters of the same 

size were relaxed via local energy minimization.  The consideration of nearest-neighbor interactions 

narrows the pool of prospective minima.   

                  

 

 

                   

(a)                                                                  (b) 

 Figure 2.1    Tentative global minimum energy configurations for a cluster of size ten.                    

GROWTH SEQUENCE 

Given the number of atoms 𝑛, we find the layer index 𝑙, side index 𝑠, and atom-on-side index 𝑘 for atom 

index 𝑖   (𝑖 = 1,2, … 𝑛) in the most closely packed hexagonal structure with the lowest potential energy 

for the cluster.    

Let the central atom (𝑙 = 0)have 𝑖 = 1 and the first-layer atoms (𝑙 = 1) have 𝑖 = 2, 3, 4, 5, 6, 7. 

For 𝑞 completely packed layers, the number of atoms 𝑛 is  

𝑛 = 3𝑞(𝑞 + 1) + 1 = 1, 7, 19, 37, …   

for 

𝑥 𝑥 

𝑦 
𝑦 
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𝑞 = 0, 1, 2, 3, … 

Thus  

3𝑞2 + 3𝑞 + (1 − 𝑛) = 0 

𝑞±(𝑛) =  
−3 ± √32 − 4(3)(1 − 𝑛)

6
=

−3 ± √12𝑛 − 3

6
. 

Let  

𝑙(𝑖) = ⌈𝑞+(𝑖)⌉, 

the ceiling function of 𝑞+, or  

⌈
√12𝑖 − 3 − 3

6
⌉                     (2) 

 

Then 

𝑙(1) =  ⌈
√12(1) − 3 − 3

6
⌉ = 0, 

 

𝑙(2) =  ⌈
√12(2) − 3 − 3

6
⌉ = 1, … 

 

𝑙(7) =  ⌈
√12(7) − 3 − 3

6
⌉ = 1. 

Let 𝑚 be the index of the completed layer immediately inside the layer where atom 𝑖 is located.  Then 

𝑚(𝑖) =  𝑙(𝑖) − 1.  

In addition, the number of atoms 𝑐 in the core of 𝑚 completed layers is  

𝑐 = 3𝑚(𝑚 + 1) + 1 = 3𝑙(𝑙 − 1) + 1. 

Thus the atom 𝑖 is the 𝑟th atom in the 𝑙th layer where  

𝑟(𝑖) =  𝑖 − 𝑐(𝑖). 
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The side index 𝑠 for the 𝑟th atom in the 𝑙th layer is 

s(r) =  1 for 𝑟 = 1, 2, … , 𝑙 − 1 

                   = 2,                𝑙, 𝑙 + 1, … , 2𝑙 − 1 

                        = 3,               2𝑙, 2𝑙 + 1, … , 3𝑙 − 1 

                         = 4,               3𝑙, 3𝑙 + 1, … , 4𝑙 − 1 

                         = 5,               4𝑙, 4𝑙 + 1, … , 5𝑙 − 1 

                                      = 6,               5𝑙, 5𝑙 + 1, … , 6𝑙 − 1, 6𝑙, 

Or  

𝑠(𝑟) = {
⌊
𝑟

𝑙
⌋ + 1, if 𝑟 < 6𝑙; 

6, if 𝑟 = 6𝑙.
                   (3) 

The number of atoms in a completed layer 𝑙 is 6𝑙: 

[3𝑙(𝑙 + 1) + 1] −  {3(𝑙 − 1)[(𝑙 − 1) + 1] + 1} = 3𝑙 − (−3𝑙) =  6𝑙. 

Accumulative number of atoms 𝑎 in layer 𝑙 on all sides before side 𝑠 is  

𝑎(𝑠) =  0  for 𝑠 = 1 

                 𝑙 − 1          2 

                                                                                         2𝑙 −  1         3 

                                                                                         3𝑙 − 1          4 

                                                                                          4𝑙 − 1          5 

                                                                                          5𝑙 − 1          6 

or 

𝑎(𝑠) = {
0,                    if 𝑠 = 1; 
(𝑠 − 1)𝑙 − 1  if 𝑠 > 1,

                  (4)                  

 

The atom-on side index for the 𝑟th atom in layer 𝑙 is  

𝑘 = 𝑟 − 𝑎[𝑠(𝑟)] 
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Since  

𝑟 = 𝑟(𝑖) =  𝑖 − 𝑐(𝑖) =  𝑖 −  {3𝑙(𝑖)[𝑙(𝑖) − 1] + 1}, 

thus  

𝑘 = 𝑘(𝑖).   

These, combined with (2),(3), and (4), 

𝑙(𝑖) =  ⌈
−3 + √12𝑖 − 3

6
⌉, 

 

𝑠(𝑟) = {
⌊
𝑟

𝑙
⌋ + 1, if 𝑟 < 6𝑙; 

6, if 𝑟 = 6𝑙,
 

and   

𝑎(𝑠) = {
0,                    if 𝑠 = 1; 
(𝑠 − 1)𝑙 − 1  if 𝑠 > 1,

 

uniquely define 𝑙 (≥ 2), 𝑠, 𝑘 for each 𝑖. 

 

Assignment of (𝑥, 𝑦) coordinates in a nonrectangular coordinate system (See Figure 2.2):  

If  

𝑖 = 1, 2, 3, 4, 5, 6, 7 

𝑥 = 0, 0, −1, −1, 0, 1, 1  

𝑦 = 0, 1, 1, 0, −1, −1, 0 

For 𝑖 ≥ 8, 

𝑠 = 1,                                    𝑥 = {

𝑙

2
+  (−1)𝑘 ⌊

𝑘

2
⌋ , 𝑙 even

𝑙+1

2
− (−1)𝑘 ⌊

𝑘

2
⌋ , 𝑙 odd

  , 𝑦 = 𝑙 − 𝑥 
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𝑠 = 2,                                    𝑥 = {
−

𝑙

2
+  (−1)𝑘 ⌊

𝑘

2
⌋ , 𝑙 even

−
𝑙−1

2
− (−1)𝑘 ⌊

𝑘

2
⌋ , 𝑙 odd

  , 𝑦 = 𝑙 

𝑠 = 3,                                    𝑥 = −𝑙, 𝑦 = {

𝑙

2
+  (−1)𝑘 ⌊

𝑘

2
⌋ , 𝑙 even

𝑙+1

2
− (−1)𝑘 ⌊

𝑘

2
⌋ , 𝑙 odd

   

𝑠 = 4,                                    𝑥 = {
−

𝑙

2
−  (−1)𝑘 ⌊

𝑘

2
⌋ , 𝑙 even

−
𝑙+1

2
+ (−1)𝑘 ⌊

𝑘

2
⌋ , 𝑙 odd     

, 𝑦 = −𝑙 − 𝑥   

 

𝑠 = 5,                                    𝑥 = {

𝑙

2
− (−1)𝑘 ⌊

𝑘

2
⌋ , 𝑙 even

𝑙−1

2
+ (−1)𝑘 ⌊

𝑘

2
⌋ , 𝑙 odd     

, 𝑦 =  −𝑙   

𝑠 = 6,                                    𝑥 = 𝑙, 𝑦 = {
−

𝑙

2
−  (−1)𝑘 ⌊

𝑘

2
⌋ , 𝑙 even

−
𝑙+1

2
+ (−1)𝑘 ⌊

𝑘

2
⌋ , 𝑙 odd     

. 
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Figure 2.2 Growth sequence configuration for 127, with shells depicted by shading. 
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GLOBAL MINIMA 

We wish to find the absolute or global minimum of (1).  We use the Big Bang Algorithm1, modified 

for the two-dimensional case, to generate random initial configurations of the clusters and the initial 

expansion of the clusters.  We perform local minimizations starting from the cluster configurations after 

this initial expansion.  (See J. C. Yang, “Structure and binding of two-dimensional Lennard-Jones 

clusters,” for details of the local minimization.)  We record the minimum energy obtained from the first 

local minimization for each cluster size.  This is our tentative global minimum on record.  We compare 

subsequent local minimum energies to this tentative global minimum.  If a subsequent local minimum 

energy is lower than the tentative global minimum, that local minimum energy becomes the new 

tentative global minimum.  The tentative global minimum becomes our final global minimum if it is 

reached 250 times.  When a global minimum is reached this many times during an unbiased random 

search, it is reasonable to terminate the search2. 

 

III. RESULTS 

Table 3.1 shows selected energies obtained through our growth sequence.  Table 3.2 shows the 

growth sequence’s results and the difference from the global minima obtained through the random 

search.  Averick et. al3 have presented their best known minima for selected sizes.  The growth 

sequence’s results are lower than or equal to all but two of these minima.  Table 3.3 shows these 

results. 
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Table 3.1 Energies obtained through growth sequence (𝑉𝑔) for 𝑛 = 100𝑘, 𝑘 = 1,2, … 20.  

 
 

𝑛 𝑉𝑔 

100 -293.697155 

200 -613.669740 

300 -937.703653 

400 -1263.246885 

500 -1591.147123 

600 -1920.310800 

700 -2249.524398 

800 -2579.787404 

900 -2910.362795 

1000 -3240.965486 

1100 -3572.706159 

1200 -3904.281518 

1300 -4236.242115 

1400 -4568.037413 

1500 -4899.806400 

1600 -5232.862910 

1700 -5565.912918 

1800 -5898.852360 

1900 -6231.812919 

2000 -6565.062394 
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Table 3.2 Energies obtained through growth sequence (𝑉𝑔) and their difference from the global minima 

(𝑉𝑚𝑖𝑛), 1 ≤ 𝑛 ≤ 80.  
 

Size  (𝑉𝑔)  (𝑉𝑚𝑖𝑛)- 𝑉𝑔 

1 0 0 

2 -1 0 

3 -3 0 

4 -5.073421 0 

5 -7.178024 0 

6 -9.358274 0 

7 -12.534867 0 

8 -14.683990 0 

9 -16.909315 0 

10 -20.101613 0 

11 -22.336541 0 

12 -25.566704 0 

13 -27.804066 0 

14 -31.036449 0 

15 -33.277828 0 

16 -36.511685 0 

17 -38.834213 0 

18 -42.078075 0 

19 -45.351119 0 

20 -47.595053 0 

21 -50.833597 0 

22 -53.158738 0 

23 -56.407376 0 

24 -59.681547 0 

25 -62.008560 0 

26 -65.257914 0 

27 -68.536250 0 

28 -70.863608 0 

29 -74.113240 0 

30 -77.391824 0 

31 -79.719688 0 

32 -82.970143 0 

33 -86.248911 0 

34 -88.584684 -0.0531159 

35 -91.919076 0 

36 -95.200430 0 

37 -98.483470 0 

38 -100.812017 0 

39 -104.062843 0 

40 -107.342522 0 
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41 -109.678989 -0.0525360 

42 -113.013762 0 

43 -116.296059 0 

44 -119.579281 0 

45 -121.916015 -0.0511305 

46 -125.251317 0 

47 -128.533746 0 

48 -131.817784 0 

49 -134.154604 -0.0511233 

50 -137.489982 0 

51 -140.772471 0 

52 -144.056559 0 

53 -146.393573 -0.0512017 

54 -149.729049 0 

55 -153.011772 0 

56 -156.295899 0 

57 -158.640929 -0.1341975 

58 -161.977951 -0.0824305 

59 -165.345572 -5.5647126E-05 

60 -168.630708 0 

61 -171.915664 0 

62 -174.252839 -0.0506046 

63 -177.588544 0 

64 -180.871358 0 

65 -184.155736 0 

66 -186.500932 -0.1342838 

67 -189.838184 -0.0825644 

68 -193.205900 -0.0003248 

69 -196.491298 0 

70 -199.776300 0 

71 -202.121616 -0.1342229 

72 -205.458929 -0.0825639 

73 -208.826834 -0.0001217 

74 -212.112269 0 

75 -215.397494 0 

76 -217.742842 -0.1343681 

77 -221.080180 -0.0825705 

78 -224.448109 -0.0001479 

79 -227.733561 0 

80 -231.018801 0 
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Table 3.3 Comparison of energies obtained through growth sequence (𝑉𝑔) with previous best known 

minima (min{𝑉2}) from Ref. 3. 
 

𝑛 −min{𝑉2} 
(Ref. 3) 

−𝑉𝑔 

100 293.697 293.697155 

200 613.700 613.669740 

300 937.704 937.703653 

400 1263.247 1263.246885 

500 1591.147 1591.147123 

600 1920.311 1920.310800 

700 2249.524 2249.524398 

800 2579.787 2579.787404 

900 2910.363 2910.362795 

1000 3240.966 3240.965486 

2000 6565.062 6565.062394 

3000 9902.100 9902.102728 

4000 13245.562 13245.561388 

5000 16595.435 16595.434511 

6000 19946.654 19946.653932 

7000 23301.707 23301.709632 

8000 26658.053 26658.055706 

9000 30015.692 30015.692059 

10000 33374.616 33374.616004 

 
 

IV. CONCLUSION 

We have developed a growth sequence that predicts the global minimum energy for a cluster of 

𝑛 atoms.  After conducting a random search for global minima, we found that the growth sequence 

produced 62 of the global minima for 1 ≤ 𝑛 ≤ 80.  The growth sequence has yielded energies lower 

than or equal to the previous best known minima for all but two of 19 sizes reported in MINPACK-2.  

It will serve as a basis for further candidates for global minima.   
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